加入收藏 | 设为首页 | 会员中心 | 我要投稿 马鞍山站长网 (https://www.0555zz.cn/)- 媒体处理、内容创作、云渲染、网络安全、业务安全!
当前位置: 首页 > 云计算 > 正文

麦肯锡合伙人:生成式AI有助于处理云迁移中的各种难题

发布时间:2023-10-16 13:09:29 所属栏目:云计算 来源:
导读:最近在新加坡举行的一场研讨会上,Bhargs Srivathsan 是麦肯锡公司的合伙人,只要运用得当,生成式AI技术有望将云迁移工作量减少30%到50%。

Srivathsan认为,“目前的进度只能说才刚刚迈出第一步。随着大语言
最近在新加坡举行的一场研讨会上,Bhargs Srivathsan 是麦肯锡公司的合伙人,只要运用得当,生成式AI技术有望将云迁移工作量减少30%到50%。

Srivathsan认为,“目前的进度只能说才刚刚迈出第一步。随着大语言模型(LLM)的发展成熟,将工作负载迁移至公有云的时间表将不断缩短、迁移过程效率也能随之提升。”

她建议组织先使用大语言模型对系统内的基础设施进行摸底,解析其中的短板与优势,再在工作负载转移完成后继续应用AI工具查看迁移是否切实有效。

在Srivathsan看来,生成式AI的四大核心用例分别是内容生成、客户参与、创建合成数据、以及编写代码。当然,这里的编写代码并非从零开始完成软件开发。生成式AI的编码能力主要体现在接收员工离职后无人熟悉的遗留代码,或者是将原有代码转换为新的语言形式。

她还进一步强调,之所以说公有云比互联网医疗尝试内部自建互联网医疗模型更加靠谱,是因为企业用户往往不具备充足的GPU储备。而且市面上现成商用模型的成本也比自行训练更加低廉。

Srivathsan指出,对于身处受监管行业、掌握大量专有数据或者担心知识产权遭到侵犯的用户,还可以设置相应的护栏。

在她看来,大语言模型在未来五、六年时间内将主要运行在超大规模基础设施环境当中,直到模型发展成熟。而且跟很多人想象中不同,其实生成式AI的实现并不一定压根那么夸张的算力储备,毕竟很少有用例会对延迟提出如此严苛的要求。

也就是说,除非是特斯拉上运行的自动驾驶功能、或者负责指挥制造车间实时运行的软件,否则确实没必要把硬件堆得太满。

另外,多数情况下也没必要使用定制或大规模模型。

这位麦肯锡合伙人评论称,“很多企业都以为自己需要买辆超级跑车来送披萨。当然用不着喽,真正符合需求的模型往往没那么复杂、也没那么大。举例来说,生成客服支持脚本肯定没必要动用650亿参数的大体量模型。”只需要一个简单的小体量就可以了。

(编辑:马鞍山站长网)

【声明】本站内容均来自网络,其相关言论仅代表作者个人观点,不代表本站立场。若无意侵犯到您的权利,请及时与联系站长删除相关内容!

    推荐文章