浅谈数据匿名化的方法、挑战与应用实践
发布时间:2023-10-21 13:04:02 所属栏目:大数据 来源:
导读:利用大量数据的分析和处理来促进公司业务进步是大数据技术的核心应用,然而,企业在使用相关的用户数据时,也需要严格保护用户的隐私安全。而在保护数据隐私的各类方法中,数据匿名化是一种非常有效的数据保护措施。
利用大量数据的分析和处理来促进公司业务进步是大数据技术的核心应用,然而,企业在使用相关的用户数据时,也需要严格保护用户的隐私安全。而在保护数据隐私的各类方法中,数据匿名化是一种非常有效的数据保护措施。 数据匿名化的方法 从数据匿名化的定义来看,该技术旨在将敏感的用户隐私信息转换成无法与特定人员关联的匿名化数据,是一种去除或哈希化与个体相关联的各种数据点的过程。这个过程使组织能够存储和交换用户数据,同时不会暴露数据与特定个人的任何联系。即使恶意分子设法获得了这些匿名化数据,也难以识别该数据属于谁,因此有助于防止身份盗窃、金融欺诈、跟踪及骚扰、歧视以及其他侵犯隐私的行为,这正是数据匿名化的目的。 数据匿名化可以通过多种方式来执行,下面收集了目前最常见的数据匿名化方法: 数据合成 二进制数据分类合成算法是在合理地保留二进制原始数据统计特征的属性的同时,基于真实数据生成人工数据集。该方法支持全面地测试、分析和数据共享,而不影响PII的可用性。 数据泛化 数据泛化是指在保留数据准确性的同时删除某些标识符,从而降低敏感信息的可识别性。这就像一个显微镜,隐藏了更精细的细节,但仍保持了用于分析的高准确性。 数据交换 数据交换是一种非常简单的匿名化方法,主要将数据中的某些属性与其他属性进行交换。这意味着在此过程结束时将得到一个混洗的数据库,避免泄露任何自然人的真实信息。 假名化 假名化是从数据集中删除某类标识符并替换为假名称的过程。这种匿名化技术的主要目标是确保特定数据难以与可识别的个人匹配。假名化数据的简单方法是用假名(伪名)替换个人的姓名。例如,当用户在注册时提交姓名“Jane”,则后台数据库可以简单地将其记录为“Person 2647”。然而,这种方法不适用于任何特定的人,因为它只能识别一个人的姓名。 (编辑:马鞍山站长网) 【声明】本站内容均来自网络,其相关言论仅代表作者个人观点,不代表本站立场。若无意侵犯到您的权利,请及时与联系站长删除相关内容! |