-
Gartner公布2022年数据分析十二大趋势
所属栏目:[大数据] 日期:2022-05-20 热度:127
关于数据的几项事实是:如今国内数据利用率仍然很低,企业数据孤岛问题显著,但数据分享成为更加主流的趋势,数据外泄的风险性愈发低于分享赢得的价值...... 对于企业来说,四种趋势和数据息息相关,发挥数据的潜在价值将带来新机会。 AI工程化是Gartner在[详细]
-
2022年企业需要关注的12项数据和分析趋向
所属栏目:[大数据] 日期:2022-05-20 热度:122
数据和分析领导者需要在自适应人工智能(AI)系统、数据共享和数据编织等趋势的基础上推动新增长、韧性和创新。 趋势一:自适应AI系统(Adaptive AI systems) 同时,构建和管理自适应AI系统需要采用AI工程实践。AI工程能够通过编排和优化应用来适应、抵御或吸[详细]
-
您是不是在楼宇安全中使用大数据?
所属栏目:[大数据] 日期:2022-05-20 热度:57
谈到大数据,物理安全有点姗姗来迟。企业已将各种数据源用于多种目的,例如向消费者进行营销(如谷歌、亚马逊和 Facebook)、提高运输效率(如包裹跟踪、航班调度和自动驾驶汽车),以及改善医疗保健服务(如、病历管理、人工智能辅助药物开发和患者健康风险评[详细]
-
2022年企业必须关注的几个大数据应用战略
所属栏目:[大数据] 日期:2022-05-20 热度:97
大数据是一个通用术语,指的是结构化和非结构化数据集合,它们对于典型的数据处理工具和系统来说过于庞大和复杂,因此难以处理。预测分析、用户行为分析以及其他从大数据中提取价值的高级数据分析方法,通常由大数据解决方案提供支持,并且很少局限于特定[详细]
-
智能交通 大数据科技在交通领域的应用
所属栏目:[大数据] 日期:2022-05-19 热度:99
最近几年,城市机动车保有量增长惊人,客车、面包车、私家车甚至是摩托车的年平均增幅达到了15%以上。根据分析,当车辆保有量年增长率超过20%的话,将会引起当年以及之后几年城市交通建设速度难以匹配保有量增长,引发交通问题。 现阶段我国城市路网存在着[详细]
-
为什么成功的数据网格实施需要数据虚拟化?
所属栏目:[大数据] 日期:2022-05-19 热度:166
组织多年来的一贯做法是将所有数据整合到单一位置,例如数据仓库或近年来兴起的数据湖。但是,集中式数据基础架构的一些弊端已初现端倪: 1. 集中式数据团队对数据的了解程度无法与只专注于全部数据中特定部分的具体业务团队相提并论。 2. 集中式数据基础[详细]
-
50%企业数据治理失败!这九大要素才是成功关键
所属栏目:[大数据] 日期:2022-05-19 热度:161
知名咨询公司Gartner的调研显示,在实施数据治理的企业中,有34%的企业数据治理处于良性建设阶段,有近50%的企业数据治理并未取得理想的效果,仅有16%的企业数据治理效果显著,处于行业领先水平。 1.数据战略 很多企业都说自己重视数据,但是能规划出明确[详细]
-
大数据时代下如何保障信息安全?
所属栏目:[大数据] 日期:2022-05-19 热度:53
大数据时代下如何保障信息安全? 1.大数据时代已来 随着网络时代日益信息化,移动互联网、社交网络、电子商务大大拓展了互联网的疆土与应用领域,我们正处在一个数据爆炸性增长的 大数据时代,大数据对社会经济、政治、文化,生活等方面产生深远的影响,大[详细]
-
从 垃圾 数据到数据完整性的转变
所属栏目:[大数据] 日期:2022-05-19 热度:188
数据产生的速度越来越快,这已经不是什么秘密。根据IDC的数据,由于在家里工作、学习和做事的人数突然增加,2020年产生和复制了更多的数据。此外,据预测,未来5年创造的数字数据量将是数字存储出现以来所创造数据量的两倍以上。 但这引出了一个问题,这些[详细]
-
现代数据栈是如何走向实时化的?
所属栏目:[大数据] 日期:2022-05-19 热度:54
时代已经变了,企业对传统的数据基础设施越来越厌烦,这些基础设施对关键的商业智能问题回答得很慢,而且经常过时,与当前的业务现实不同步,通常是一天或更长时间。 现代企业的需求和要求正在以戏剧性的方式转变。因此,旧的批处理模式(每天一次大的更新[详细]
-
阿里巴巴云原生大数据运维平台 SREWorks 正式开源
所属栏目:[大数据] 日期:2022-05-19 热度:136
随着行业不断发展,大数据AI也逐渐呈现云原生化的趋势。复杂的业务场景及其背后涉及到的不同技术方向的开源和自研,使得产品运维面临技术复杂度高、规模大、场景多等挑战。 阿里巴巴云原生大数据运维平台 SREWorks,沉淀了团队近10年经过内部业务锤炼的 SR[详细]
-
数据管理战略 企业可实施的六个方面
所属栏目:[大数据] 日期:2022-05-19 热度:113
数据战略为更好的数据管理和治理奠定了基础,但仍有改进的空间。为了让数据管理走向现代化,企业需要正确的工具、环境、资源和权限来建立数据驱动的项目,并建立指导方针和边界,以确保成本、敏感信息的保护和法律合规性得到有效管理。 以下是企业在实施数[详细]
-
大数据时代个人隐私数据保护的挑战与思考
所属栏目:[大数据] 日期:2022-05-19 热度:106
大数据时代个人隐私数据保护的挑战与思考: 一、大数据时代个人隐私数据泄露已成为全球重大的社会问题 随着信息技术的飞速发展,数据化生存已逐渐成为人类社会运行的常态,数据在公共管理、科学研究、企业营销等领域发挥着重要作用。 疫情发生以来,利用大[详细]
-
大数据分析如何发挥重要的作用
所属栏目:[大数据] 日期:2022-05-19 热度:173
在人们的工作和生活中,都会产生大量数据。人们每次打开电子邮件、在线联系他人、使用智能手机应用程序、与任何客户支持代表交谈、进行在线购买或联系虚拟助手时,服务提供商和开发商都会收集这些原始数据。这些庞大的、无组织的数据集群被称为大数据。 简[详细]
-
为什么2022年仍然存在数据孤岛?
所属栏目:[大数据] 日期:2022-04-01 热度:84
企业摆脱数据孤岛并不容易。人们需要了解什么是数据孤岛、为何难以消除数据孤岛以及如何克服这些挑战。 好消息是,如今可供企业使用的数据比以往任何时候都多。从客户注册在线帐户到向企业提供他们的详细信息,信息对于帮助企业做出关键业务决策非常宝贵。[详细]
-
供应链分析 保持物流顺畅的五个技巧
所属栏目:[大数据] 日期:2022-04-01 热度:128
事实表明,越来越多的企业采用数据分析来应对供应链中断,并加强供应链管理(SCM)。 专业服务和咨询机构毕马威公司在最近发布的一份研究报告中指出,目前有几项重大中断正在影响供应链。其中包括由于新冠疫情而导致的全球物流持续中断,这些中断将继续影响[详细]
-
2022年的5个主要的数据迁移趋势
所属栏目:[大数据] 日期:2022-04-01 热度:124
数据似乎总是需要迁移,无论是从内部部署设施迁移到云平台,还是从操作系统到长期存档,数据始终在移动。 以下是2022年数据迁移市场的五个主要趋势: 1.非结构化数据迁移 2022年,首席信息官将会继续关注基础设施的现代化,以支持由于下一代应用程序、云计[详细]
-
创建数据驱动的价值生态系统的3个步骤
所属栏目:[大数据] 日期:2022-04-01 热度:135
事实证明,管理大量数据和颠覆性技术的关键在于建立一个能力中心。 尽管许多企业在其数据分析项目中使用人工智能和机器语言工具作为核心推动因素,并且全球人工智能支出持续增加,但事实上,大多数数据科学项目注定要失败。 导致这些失败的原因有很多,从[详细]
-
需要避免的7个数据治理错误
所属栏目:[大数据] 日期:2022-04-01 热度:58
如今的每个数据交易都是一种商业交易,这是构建一个强大、安全、适应性强且尽可能无错误的数据治理框架至关重要的原因。 大多数首席信息官都知道,处理不当的数据可能会导致财务、声誉、法律和其他问题。这就是企业需要拥有强大的数据治理策略的原因,也就[详细]
-
汽车公司和移动通信公司如何使用大数据提高驾驶安全性
所属栏目:[大数据] 日期:2022-04-01 热度:146
大数据技术如今在保障驾驶安全方面取得了重要进展,而有些人没有意识到大数据提供的惊人好处。大数据的最大好处之一是它可以帮助提高汽车驾驶的安全性。 在阻止发生交通事故方面,数据分析技术变得越来越有用。许多企业正在共享数据,为提高交通安全提供帮[详细]
-
企业IT可以真正将大数据应用到哪些地方?
所属栏目:[大数据] 日期:2022-04-01 热度:194
在各行业领域中,很少有比大数据更容易提及同时又不太容易理解的术语。这可能会让人们很容易将大数据视为一个不经意提到的流行语,而不仅仅是对于企业的流程和业务密切相关的真实价值的一个概念,但这是一个错误。理解并正确利用大数据对于任何企业的成功[详细]
-
业务分析师获取更多收入可以采取的7个措施
所属栏目:[大数据] 日期:2022-04-01 热度:143
无论是原地踏步还是展翅高飞,业务分析师都有很多方法提升其业务水平和收入。 业务分析师的工作通常是企业中最重要的工作之一:利用数据分析来弥合IT与业务之间的差距。在这一过程中,他们与业务领导者和用户互动,以更好地了解流程、产品、服务、软件和硬[详细]
-
选择嵌入式分析供应商时需要考虑的8件事
所属栏目:[大数据] 日期:2022-04-01 热度:129
选择嵌入式分析供应商并非易事,市场上可用的解决方案太多了,因此需要了解如何做出最佳决策,并确保投资更有效的解决方案。 事实是并没有直接的答案。正确答案其实是几个正确答案的组合,当然还有企业的特定业务需求。因此,企业在选择嵌入式分析供应商时[详细]
-
最大化数据分析价值的5种方法
所属栏目:[大数据] 日期:2022-04-01 热度:155
数字时代使大多数企业追求数据驱动战略的成果,但确保获得回报比大多数人想象的要微妙得多。 许多企业都在收集大量数据并对其进行分析,而通过分析这些数据获得最佳商业价值完全是另一回事。 在分析工具上投入巨资的企业可能没有找到方法来确保其努力带来[详细]
-
企业2022的年数字营销策略必定包含的5个数据点
所属栏目:[大数据] 日期:2022-04-01 热度:142
大数据技术在企业的数字营销策略中可能非常重要,但前提是专注于正确的数据点。 企业必须关注重要的数据点!数字营销基于直觉的日子已经一去不复返了。很多人知道数据对于成功的战略至关重要。但困难的是知道要关注哪些数据点如何将信号与噪声分开。 如今,[详细]